Supporting Information for the manuscript entitled "Enhanced morphological transformation of human lung epithelial cells by continuous exposure to cellulose nanocrystals"

E.R. Kisin^{1,#}, N. Yanamala^{1,#}, D. Rodin², A. Menas¹, M. Farcas¹, M. Russo^{1,3}, S. Guppi¹, T. Khaliullin^{1,4},
I. Iavicoli⁵, M. Harper⁶, A. Star⁷, V.E. Kagan^{8,9,10}, A.A. Shvedova^{1,4,*}

¹EAB, HELD, NIOSH, CDC, Morgantown, WV, USA; ²Department of Molecular Biology, Ariel University, Ariel, Israel; ³Institute of Public Health, Section of Occupational Medicine, Catholic University of the Sacred Heart, Rome, Italy; ⁴Department of Physiology & Pharmacology, WVU, Morgantown, WV, USA;. ⁵Department of Public Health, University of Naples Federico II, Naples, Italy; ⁶Zefon International, Ocala, FL, USA; Departments of ⁷Chemistry and ⁸Environmental & Occupational Health and ⁹Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; ¹⁰Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russian Federation.

*Corresponding Author: Dr. Anna A. Shvedova, Exposure Assessment Branch (MS-2015), 1095 Willowdale Road, Morgantown, WV 26505 USA. Phone: (304) 285-6177. E-mail: ats1@cdc.gov

^{*}Both authors' contributed equally to the manuscript.

Table S1. The average dimensions of CNC powder/gel and tremolite fibers

CNC	Diameter, nm	Length, nm	Width, nm
CNC Powder	149 <u>+</u> 2.6	158 <u>+</u> 97	54 <u>+</u> 17
CNC Gel	137.5 <u>+</u> 1.2	209 <u>+</u> 136	37 <u>±</u> 15
Tremolite Fibers		6560 <u>+</u> 210	310 <u>±</u> 10

The average dimensions of CNC materials were determined using DLS/AFM measurements. The CNC results are presented as mean \pm SD. The reported values (CNC) correspond to the mean of ten separate runs. The average size of tremolite fibers were determined using TEM (n=817) with data presented as mean \pm SEM.

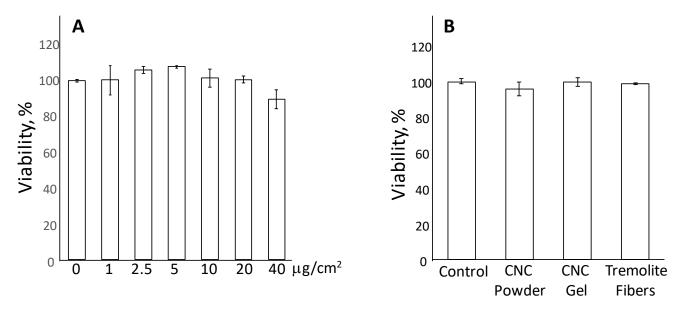
Table S2. The degree of oxidative stress induced by CNC in BEAS-2B cells

	Control	CNC Powder	CNC Gel
GSH nmol/mg protein	10.72 <u>+</u> 0.18	7.52 <u>+</u> 0.71*	8.45 <u>+</u> 0.75*
SH nmol/mg protein	166.86 <u>+</u> 6.33	154.15 <u>+</u> 8.66	146.39 <u>+</u> 10.72
HNE-His μg/mg protein	15.85 <u>+</u> 0.26	17.77 <u>+</u> 0.49*	15.47 <u>+</u> 1.52
Carbonyls nmol/mg protein	0.22 <u>+</u> 0.01	0.25 <u>+</u> 0.01	0.26 <u>+</u> 0.02

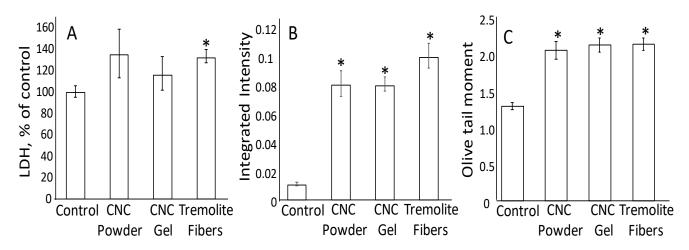
The results are expressed as the mean \pm SEM (n=3), * indicate significant differences from control cells ($p \le 0.05$).

Table S3. Differential response in various inflammatory cytokines (CNC, $30 \mu g/cm^2$, once a week/4 weeks)

pg/total cells, x10 ⁻⁶	Control	CNC powder	CNC gel
ΙΙ-1β	0.05 <u>+</u> 0.01	0.11 <u>+</u> 0.01*α	0.05 <u>+</u> 0.01
IL-1rα	2.63 <u>+</u> 0.55	6.30 <u>+</u> 1.13*α	1.70 <u>+</u> 0.06
IL-2	0.28 <u>+</u> 0.07	0.67 <u>+</u> 0.10*α	0.30 <u>+</u> 0.02
IL-4	0.11 <u>+</u> 0.02	0.22 <u>+</u> 0.02*α	0.06 <u>+</u> 0.01
IL-6	10.40 <u>+</u> 2.12	51.70 <u>+</u> 6.19*α	8.39 <u>+</u> 1.32
IL-5	ND	ND	ND
IL-7	1.10 <u>+</u> 0.22	1.01 <u>+</u> 0.07	0.89 <u>+</u> 0.14
IL-8	22.92 <u>+</u> 4.60	147.38 <u>+</u> 14.78*α	28.60 <u>+</u> 3.66
IL-9	0.49 <u>+</u> 0.08	1.04 <u>+</u> 0.13*	0.55 <u>+</u> 0.07
IL-10	1.07 <u>+</u> 0.21	1.11 <u>+</u> 0.14	1.27 <u>+</u> 0.20
IL-12p70	19.26 <u>+</u> 4.04	19.76 <u>+</u> 3.18	16.54 <u>+</u> 2.98
IL-13	0.52 <u>+</u> 0.08	0.63 <u>+</u> 0.06	0.65 <u>+</u> 0.10
IL-15	0.34 <u>+</u> 0.08	0.74 <u>+</u> 0.06*	0.55 <u>+</u> 0.07
IL-17	3.38 <u>+</u> 0.67	5.85 <u>+</u> 1.00	4.21 <u>+</u> 0.58
Eotaxin	0.86 <u>+</u> 0.18	2.53 <u>+</u> 0.36* ^α	0.86 <u>+</u> 0.08
FGF-basic	1.48 <u>+</u> 0.29	2.13 <u>+</u> 0.31	1.52 <u>+</u> 0.26
G-CSF	3.53 <u>+</u> 0.69	14.68 <u>+</u> 2.52*α	2.92 <u>+</u> 0.42
GM-CSF	1.89 <u>+</u> 0.41	3.44 <u>+</u> 0.59	3.06 <u>+</u> 0.41
IFN-γ	10.22 <u>+</u> 2.09	13.94 <u>+</u> 2.45 ^α	3.54 <u>+</u> 0.44
IP-10	7.80 <u>+</u> 1.86	30.19 <u>+</u> 0.92*α	3.70 <u>+</u> 0.28
MCP-1	599.77 <u>+</u> 125.23	1103.17 <u>+</u> 171.91	625.18 <u>+</u> 121.27
MIP-1α	0.05 <u>+</u> 0.01	0.07 <u>+</u> 0.01	0.05 <u>+</u> 0.0.01
PDGF-bb	17.55 <u>+</u> 4.22	3.71 <u>+</u> 0.93*	2.29 <u>+</u> 0.42*
MIP-1β	0.23 <u>+</u> 0.47	0.26 <u>+</u> 0.04	0.31 <u>+</u> 0.04
RANTES	1.14 <u>+</u> 0.21	1.52 <u>+</u> 0.09	0.51 <u>+</u> 0.05* ^β
TNF-α	1.08 <u>+</u> 0.18	2.60 <u>+</u> 0.35*α	0.71 <u>+</u> 0.08
VEGF	ND	ND	ND


These measurements were performed using Bio-Rad 27 human assay kits, a combination of inflammatory cytokines with a subset of chemokine's/growth factors. The results are expressed as the mean \pm SEM (n=3), *indicate significant differences from control cells, α indicate significant difference from CNC gel-

exposed cells, β indicate significant difference from CNC powder-exposed cells ($p \le 0.05$). VEGF and IL-5 were not detected (ND).


Table S4. Differential response in various inflammatory cytokines (TF, $2.5 \mu g/cm^2$, once a week/4 weeks)

pg/total cells, x10 ⁻⁶	Control	Tuo no alita
	Control	Tremolite
IL-1β	0.11 <u>+</u> 0.02	0.24 <u>+</u> 0.01*
IL-1rα	0.63 <u>+</u> 0.15	2.03 <u>+</u> 0.04*
IL-2	0.52 <u>+</u> 0.11	0.95 <u>+</u> 0.08*
IL-4	0.13 <u>+</u> 0.02	0.22 <u>+</u> 0.01*
IL-5	0.34 <u>+</u> 0.1	0.64 <u>+</u> 0.03*
IL-6	0.22 <u>+</u> 0.04	0.39 <u>+</u> 0.02*
IL-7	0.24 <u>+</u> 0.01	0.92 <u>+</u> 0.17
IL-8	0.49 <u>+</u> 0.02	0.76 <u>+</u> 0.04*
IL-9	ND	ND
IL-10	ND	ND
IL-12p70	0.29 <u>+</u> 0.01	0.38 <u>+</u> 0.01*
IL-13	0.01 <u>+</u> 0.00	0.05 <u>+</u> 0.00*
IL-15	0.51 <u>+</u> 0.07	0.94 <u>+</u> 0.11*
IL-17	4.91 <u>+</u> 0.90	8.39 <u>+</u> 0.63*
Eotaxin	1.47 <u>+</u> 0.23	2.73 <u>+</u> 0.15*
FGF-basic	229.85 <u>+</u> 56.55	561.03 <u>+</u> 65.63*
G-CSF	3.51 <u>+</u> 0.92	5.42 <u>+</u> 0.66
GM-CSF	0.28 <u>+</u> 0.02	0.45 <u>+</u> 0.03*
IFN-γ	5.34 <u>+</u> 1.04	9.28 <u>+</u> 0.54*
IP-10	0.91 <u>+</u> 0.17	1.61 <u>+</u> 0.09*
MCP-1	0.85 <u>+</u> 0.08	1.54 <u>+</u> 0.05*
MIP-1α	0.06 <u>+</u> 0.00	0.08 <u>+</u> 0.01
PDGF-bb	2.42 <u>+</u> 0.23	3.85 <u>+</u> 0.35*
MIP-1β	0.07 <u>+</u> 0.01	0.09 <u>+</u> 0.01
RANTES	0.46 <u>+</u> 0.06	0.73 <u>+</u> 0.05*
TNF-α	1.47 <u>+</u> 0.23	2.52 <u>+</u> 0.24
VEGF	8.18 <u>+</u> 0.48	13.48 <u>+</u> 0.91*

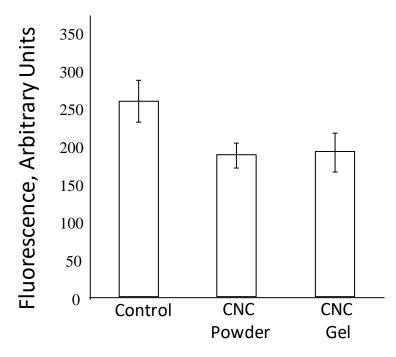

These measurements were performed using Bio-Rad 27 human assay kits, a combination of inflammatory cytokines with a subset of chemokine's/growth factors. The results are expressed as the mean \pm SEM (n=2-3), *indicate significant differences from control cells ($p \le 0.05$). IL-9 and IL-10 were not detected (ND).

Figure S1. Cell cytotoxicity following exposure to CNC or TF: (A) viability of BEAS-2B cells exposed to different concentrations of TF for 24h; (B) viability of BEAS-2B cells exposed to CNC (powder or gel, $30 \,\mu\text{g/cm}^2$) and TF (2.5 $\,\mu\text{g/cm}^2$) for 72h. The results are expressed as the mean \pm SEM (n=2-3).

Figure S2. Cell cytotoxicity (A), intracellular ROS (B) and DNA damage represented by olive tail moment (C), after 72h of BEAS-2B cells exposure with CNC (powder or gel, 30 μ g/cm²) and TF (2.5 μ g/cm²). The results are expressed as the mean \pm SEM (n=3), *indicate significant differences from control cells ($p \le 0.05$).

Figure S3. Apoptosis analysis in BEAS-2B cells exposed to CNC powder or gel (30 μ g/cm²/week) using Cell Meter TUNEL assay kit. Fluorescence intensity was monitored at Ex/Em 550/590nm. The results are expressed as the mean \pm SEM of the three independent experiments.